extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C4).1D4 = C24⋊C8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).1D4 | 128,48 |
(C22×C4).2D4 = C23.15M4(2) | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).2D4 | 128,49 |
(C22×C4).3D4 = (C2×D4)⋊C8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).3D4 | 128,50 |
(C22×C4).4D4 = (C2×C42).C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).4D4 | 128,51 |
(C22×C4).5D4 = C42⋊C8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).5D4 | 128,56 |
(C22×C4).6D4 = C42⋊3C8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).6D4 | 128,57 |
(C22×C4).7D4 = C23.2M4(2) | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).7D4 | 128,58 |
(C22×C4).8D4 = C24.D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).8D4 | 128,75 |
(C22×C4).9D4 = C23.4D8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).9D4 | 128,76 |
(C22×C4).10D4 = C23.Q16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).10D4 | 128,83 |
(C22×C4).11D4 = C24.4D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).11D4 | 128,84 |
(C22×C4).12D4 = C4⋊C4.D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).12D4 | 128,329 |
(C22×C4).13D4 = C24.9D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).13D4 | 128,332 |
(C22×C4).14D4 = C4⋊C4.6D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).14D4 | 128,335 |
(C22×C4).15D4 = C24.12D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).15D4 | 128,338 |
(C22×C4).16D4 = C4⋊C4.12D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).16D4 | 128,341 |
(C22×C4).17D4 = C24.15D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).17D4 | 128,344 |
(C22×C4).18D4 = C4⋊C4.18D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).18D4 | 128,347 |
(C22×C4).19D4 = C24.18D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).19D4 | 128,350 |
(C22×C4).20D4 = C4≀C2⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).20D4 | 128,591 |
(C22×C4).21D4 = C42⋊9(C2×C4) | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).21D4 | 128,592 |
(C22×C4).22D4 = C24.22D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).22D4 | 128,599 |
(C22×C4).23D4 = C8.C22⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).23D4 | 128,614 |
(C22×C4).24D4 = C8⋊C22⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).24D4 | 128,615 |
(C22×C4).25D4 = C24.26D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).25D4 | 128,622 |
(C22×C4).26D4 = C42.13D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).26D4 | 128,930 |
(C22×C4).27D4 = C23.D8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).27D4 | 128,71 |
(C22×C4).28D4 = C23.2D8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).28D4 | 128,72 |
(C22×C4).29D4 = C23.SD16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).29D4 | 128,73 |
(C22×C4).30D4 = C23.2SD16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).30D4 | 128,74 |
(C22×C4).31D4 = C2.C2≀C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).31D4 | 128,77 |
(C22×C4).32D4 = (C2×C4).D8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).32D4 | 128,78 |
(C22×C4).33D4 = (C2×C4).Q16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).33D4 | 128,85 |
(C22×C4).34D4 = C2.7C2≀C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).34D4 | 128,86 |
(C22×C4).35D4 = C24.5D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).35D4 | 128,122 |
(C22×C4).36D4 = C23.2C42 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).36D4 | 128,123 |
(C22×C4).37D4 = C23.3C42 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).37D4 | 128,124 |
(C22×C4).38D4 = (C2×Q8).Q8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).38D4 | 128,126 |
(C22×C4).39D4 = (C22×C8)⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).39D4 | 128,127 |
(C22×C4).40D4 = C23⋊D8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).40D4 | 128,327 |
(C22×C4).41D4 = C23⋊SD16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).41D4 | 128,328 |
(C22×C4).42D4 = (C2×C4)⋊D8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).42D4 | 128,330 |
(C22×C4).43D4 = (C2×C4)⋊SD16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).43D4 | 128,331 |
(C22×C4).44D4 = C23⋊2SD16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).44D4 | 128,333 |
(C22×C4).45D4 = C23⋊Q16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).45D4 | 128,334 |
(C22×C4).46D4 = Q8⋊D4⋊C2 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).46D4 | 128,336 |
(C22×C4).47D4 = (C2×C4)⋊Q16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).47D4 | 128,337 |
(C22×C4).48D4 = C23.5D8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).48D4 | 128,339 |
(C22×C4).49D4 = C24.14D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).49D4 | 128,340 |
(C22×C4).50D4 = (C2×C4).5D8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).50D4 | 128,342 |
(C22×C4).51D4 = (C2×C4).SD16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).51D4 | 128,343 |
(C22×C4).52D4 = C24.16D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).52D4 | 128,345 |
(C22×C4).53D4 = C24.17D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).53D4 | 128,346 |
(C22×C4).54D4 = C4⋊C4.19D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).54D4 | 128,348 |
(C22×C4).55D4 = C4⋊C4.20D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).55D4 | 128,349 |
(C22×C4).56D4 = 2+ 1+4⋊2C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).56D4 | 128,522 |
(C22×C4).57D4 = 2+ 1+4.2C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).57D4 | 128,523 |
(C22×C4).58D4 = 2- 1+4⋊2C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).58D4 | 128,525 |
(C22×C4).59D4 = 2+ 1+4⋊4C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).59D4 | 128,526 |
(C22×C4).60D4 = C4.10D4⋊2C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).60D4 | 128,589 |
(C22×C4).61D4 = M4(2).40D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).61D4 | 128,590 |
(C22×C4).62D4 = (C2×D4).Q8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).62D4 | 128,600 |
(C22×C4).63D4 = M4(2)⋊19D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).63D4 | 128,616 |
(C22×C4).64D4 = C4⋊Q8⋊15C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).64D4 | 128,618 |
(C22×C4).65D4 = C4.4D4⋊13C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).65D4 | 128,620 |
(C22×C4).66D4 = (C2×C8)⋊D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).66D4 | 128,623 |
(C22×C4).67D4 = C4.(C4×D4) | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).67D4 | 128,641 |
(C22×C4).68D4 = (C2×C8)⋊4D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).68D4 | 128,642 |
(C22×C4).69D4 = C42.7D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).69D4 | 128,644 |
(C22×C4).70D4 = C24.28D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).70D4 | 128,645 |
(C22×C4).71D4 = M4(2)⋊21D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).71D4 | 128,646 |
(C22×C4).72D4 = M4(2).50D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).72D4 | 128,647 |
(C22×C4).73D4 = C42.129D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).73D4 | 128,735 |
(C22×C4).74D4 = C42.130D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).74D4 | 128,737 |
(C22×C4).75D4 = M4(2)⋊D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).75D4 | 128,738 |
(C22×C4).76D4 = M4(2)⋊4D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).76D4 | 128,739 |
(C22×C4).77D4 = (C2×D4)⋊2Q8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).77D4 | 128,759 |
(C22×C4).78D4 = (C2×Q8)⋊2Q8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).78D4 | 128,760 |
(C22×C4).79D4 = C24⋊2Q8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).79D4 | 128,761 |
(C22×C4).80D4 = C24.180C23 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).80D4 | 128,762 |
(C22×C4).81D4 = M4(2).7D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).81D4 | 128,770 |
(C22×C4).82D4 = C42⋊11D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).82D4 | 128,771 |
(C22×C4).83D4 = C42⋊12D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).83D4 | 128,772 |
(C22×C4).84D4 = C24.33D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).84D4 | 128,776 |
(C22×C4).85D4 = M4(2)⋊Q8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).85D4 | 128,792 |
(C22×C4).86D4 = C42⋊3Q8 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).86D4 | 128,793 |
(C22×C4).87D4 = C24.182C23 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).87D4 | 128,794 |
(C22×C4).88D4 = C2×C2≀C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).88D4 | 128,850 |
(C22×C4).89D4 = C2×C23.D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).89D4 | 128,851 |
(C22×C4).90D4 = C4○C2≀C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).90D4 | 128,852 |
(C22×C4).91D4 = C24.36D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).91D4 | 128,853 |
(C22×C4).92D4 = C2≀C4⋊C2 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).92D4 | 128,854 |
(C22×C4).93D4 = C23.(C2×D4) | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).93D4 | 128,855 |
(C22×C4).94D4 = C4⋊Q8⋊29C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).94D4 | 128,858 |
(C22×C4).95D4 = C4.4D4⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).95D4 | 128,860 |
(C22×C4).96D4 = C4⋊Q8⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).96D4 | 128,861 |
(C22×C4).97D4 = C2×C42.C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).97D4 | 128,862 |
(C22×C4).98D4 = C2×C42.3C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).98D4 | 128,863 |
(C22×C4).99D4 = (C2×D4).135D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).99D4 | 128,864 |
(C22×C4).100D4 = C4⋊Q8.C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).100D4 | 128,865 |
(C22×C4).101D4 = C4⋊1D4.C4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).101D4 | 128,866 |
(C22×C4).102D4 = (C2×D4).137D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).102D4 | 128,867 |
(C22×C4).103D4 = D8⋊D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).103D4 | 128,922 |
(C22×C4).104D4 = D8.D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).104D4 | 128,923 |
(C22×C4).105D4 = C42.14D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).105D4 | 128,933 |
(C22×C4).106D4 = M5(2).C22 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).106D4 | 128,970 |
(C22×C4).107D4 = C23.10SD16 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).107D4 | 128,971 |
(C22×C4).108D4 = C2×D4.8D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).108D4 | 128,1748 |
(C22×C4).109D4 = C2×D4.10D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).109D4 | 128,1749 |
(C22×C4).110D4 = C42.313C23 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).110D4 | 128,1750 |
(C22×C4).111D4 = M4(2).C23 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).111D4 | 128,1752 |
(C22×C4).112D4 = C42.12C23 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 16 | 8+ | (C2^2xC4).112D4 | 128,1753 |
(C22×C4).113D4 = C42.13C23 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).113D4 | 128,1754 |
(C22×C4).114D4 = C2×C23.7D4 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).114D4 | 128,1756 |
(C22×C4).115D4 = C23.10C24 | φ: D4/C1 → D4 ⊆ Aut C22×C4 | 32 | 8- | (C2^2xC4).115D4 | 128,1760 |
(C22×C4).116D4 = C42⋊1C8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).116D4 | 128,6 |
(C22×C4).117D4 = C42.20D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).117D4 | 128,7 |
(C22×C4).118D4 = C24.46D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).118D4 | 128,16 |
(C22×C4).119D4 = C42.23D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).119D4 | 128,19 |
(C22×C4).120D4 = C42.25D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).120D4 | 128,22 |
(C22×C4).121D4 = C24.5Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).121D4 | 128,171 |
(C22×C4).122D4 = C24.52D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).122D4 | 128,172 |
(C22×C4).123D4 = C24.632C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).123D4 | 128,174 |
(C22×C4).124D4 = C24.633C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).124D4 | 128,175 |
(C22×C4).125D4 = C24.634C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).125D4 | 128,176 |
(C22×C4).126D4 = C24.635C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).126D4 | 128,177 |
(C22×C4).127D4 = C24.59D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).127D4 | 128,248 |
(C22×C4).128D4 = C42.72D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).128D4 | 128,267 |
(C22×C4).129D4 = D4.C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).129D4 | 128,491 |
(C22×C4).130D4 = C2.(C8⋊D4) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).130D4 | 128,667 |
(C22×C4).131D4 = C2.(C8⋊2D4) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).131D4 | 128,668 |
(C22×C4).132D4 = C4.(C4×Q8) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).132D4 | 128,675 |
(C22×C4).133D4 = C8⋊(C4⋊C4) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).133D4 | 128,676 |
(C22×C4).134D4 = (C2×Q16)⋊10C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).134D4 | 128,703 |
(C22×C4).135D4 = (C2×D8)⋊10C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).135D4 | 128,704 |
(C22×C4).136D4 = C8⋊(C22⋊C4) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).136D4 | 128,705 |
(C22×C4).137D4 = C23⋊2D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).137D4 | 128,731 |
(C22×C4).138D4 = C23⋊3SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).138D4 | 128,732 |
(C22×C4).139D4 = C23⋊2Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).139D4 | 128,733 |
(C22×C4).140D4 = C42⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 16 | 4 | (C2^2xC4).140D4 | 128,742 |
(C22×C4).141D4 = (C22×D8).C2 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).141D4 | 128,744 |
(C22×C4).142D4 = (C2×C8).41D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).142D4 | 128,747 |
(C22×C4).143D4 = C4⋊C4.84D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).143D4 | 128,757 |
(C22×C4).144D4 = C4⋊C4.85D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).144D4 | 128,758 |
(C22×C4).145D4 = C24.83D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).145D4 | 128,765 |
(C22×C4).146D4 = C24.84D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).146D4 | 128,766 |
(C22×C4).147D4 = C24.85D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).147D4 | 128,767 |
(C22×C4).148D4 = C24.86D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).148D4 | 128,768 |
(C22×C4).149D4 = C4⋊C4.94D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).149D4 | 128,774 |
(C22×C4).150D4 = (C2×C4)⋊3D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).150D4 | 128,786 |
(C22×C4).151D4 = (C2×C4)⋊5SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).151D4 | 128,787 |
(C22×C4).152D4 = (C2×C4)⋊3Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).152D4 | 128,788 |
(C22×C4).153D4 = C2.(C8⋊Q8) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).153D4 | 128,791 |
(C22×C4).154D4 = C4⋊C4.106D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).154D4 | 128,797 |
(C22×C4).155D4 = (C2×Q8).8Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).155D4 | 128,798 |
(C22×C4).156D4 = (C2×C4).23D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).156D4 | 128,799 |
(C22×C4).157D4 = (C2×C8).52D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).157D4 | 128,800 |
(C22×C4).158D4 = C42⋊8C4⋊C2 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).158D4 | 128,805 |
(C22×C4).159D4 = (C2×Q8).109D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).159D4 | 128,806 |
(C22×C4).160D4 = C23.12D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).160D4 | 128,807 |
(C22×C4).161D4 = C24.88D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).161D4 | 128,808 |
(C22×C4).162D4 = C24.89D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).162D4 | 128,809 |
(C22×C4).163D4 = (C2×C8).24Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).163D4 | 128,817 |
(C22×C4).164D4 = (C2×C8).168D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).164D4 | 128,824 |
(C22×C4).165D4 = (C2×C8).171D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).165D4 | 128,829 |
(C22×C4).166D4 = C4⋊C4.Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).166D4 | 128,833 |
(C22×C4).167D4 = C24.195C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).167D4 | 128,1054 |
(C22×C4).168D4 = C42.383D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).168D4 | 128,1675 |
(C22×C4).169D4 = C42.384D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).169D4 | 128,1834 |
(C22×C4).170D4 = C42.260D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).170D4 | 128,1915 |
(C22×C4).171D4 = C24.124D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).171D4 | 128,1923 |
(C22×C4).172D4 = C42.269D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).172D4 | 128,1943 |
(C22×C4).173D4 = C42.284D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).173D4 | 128,1964 |
(C22×C4).174D4 = C42.298D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).174D4 | 128,1982 |
(C22×C4).175D4 = C42.4Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).175D4 | 128,17 |
(C22×C4).176D4 = C42.5Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).176D4 | 128,18 |
(C22×C4).177D4 = C42.6Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).177D4 | 128,20 |
(C22×C4).178D4 = C23.8D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).178D4 | 128,21 |
(C22×C4).179D4 = C42.26D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).179D4 | 128,23 |
(C22×C4).180D4 = C42.27D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).180D4 | 128,24 |
(C22×C4).181D4 = C24.2Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).181D4 | 128,25 |
(C22×C4).182D4 = C42.388D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).182D4 | 128,31 |
(C22×C4).183D4 = C23.C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).183D4 | 128,37 |
(C22×C4).184D4 = C23.8C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).184D4 | 128,38 |
(C22×C4).185D4 = C22.SD32 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).185D4 | 128,79 |
(C22×C4).186D4 = C23.32D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).186D4 | 128,80 |
(C22×C4).187D4 = C23.12SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).187D4 | 128,81 |
(C22×C4).188D4 = C23.13SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).188D4 | 128,82 |
(C22×C4).189D4 = C8.11C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).189D4 | 128,115 |
(C22×C4).190D4 = C23.9D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).190D4 | 128,116 |
(C22×C4).191D4 = C8.13C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).191D4 | 128,117 |
(C22×C4).192D4 = C8.C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).192D4 | 128,118 |
(C22×C4).193D4 = C8.2C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).193D4 | 128,119 |
(C22×C4).194D4 = M5(2).C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).194D4 | 128,120 |
(C22×C4).195D4 = C8.4C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).195D4 | 128,121 |
(C22×C4).196D4 = C24.631C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).196D4 | 128,173 |
(C22×C4).197D4 = C24.636C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).197D4 | 128,178 |
(C22×C4).198D4 = C25.3C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).198D4 | 128,194 |
(C22×C4).199D4 = (C2×C4)⋊M4(2) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).199D4 | 128,195 |
(C22×C4).200D4 = C23⋊M4(2) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).200D4 | 128,197 |
(C22×C4).201D4 = C42.373D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).201D4 | 128,214 |
(C22×C4).202D4 = C42.400D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).202D4 | 128,216 |
(C22×C4).203D4 = C42.401D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).203D4 | 128,217 |
(C22×C4).204D4 = C42.374D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).204D4 | 128,220 |
(C22×C4).205D4 = D4⋊4M4(2) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).205D4 | 128,221 |
(C22×C4).206D4 = C42.52D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).206D4 | 128,227 |
(C22×C4).207D4 = C42.53D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).207D4 | 128,228 |
(C22×C4).208D4 = C42.54D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).208D4 | 128,229 |
(C22×C4).209D4 = C2×C22.SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).209D4 | 128,230 |
(C22×C4).210D4 = C2×C23.31D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).210D4 | 128,231 |
(C22×C4).211D4 = C24.150D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).211D4 | 128,236 |
(C22×C4).212D4 = C24.56D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).212D4 | 128,242 |
(C22×C4).213D4 = C24.57D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).213D4 | 128,243 |
(C22×C4).214D4 = C42.58D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).214D4 | 128,244 |
(C22×C4).215D4 = C24.58D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).215D4 | 128,245 |
(C22×C4).216D4 = C42.59D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).216D4 | 128,246 |
(C22×C4).217D4 = C42.60D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).217D4 | 128,247 |
(C22×C4).218D4 = C42.61D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).218D4 | 128,249 |
(C22×C4).219D4 = C42.62D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).219D4 | 128,250 |
(C22×C4).220D4 = C24.60D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).220D4 | 128,251 |
(C22×C4).221D4 = C24.61D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).221D4 | 128,252 |
(C22×C4).222D4 = C42.63D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).222D4 | 128,253 |
(C22×C4).223D4 = C42.405D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).223D4 | 128,257 |
(C22×C4).224D4 = C42.406D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).224D4 | 128,258 |
(C22×C4).225D4 = C42.407D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).225D4 | 128,259 |
(C22×C4).226D4 = C42.408D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).226D4 | 128,260 |
(C22×C4).227D4 = C42.376D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).227D4 | 128,261 |
(C22×C4).228D4 = C42.70D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).228D4 | 128,265 |
(C22×C4).229D4 = C42.71D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).229D4 | 128,266 |
(C22×C4).230D4 = C42.73D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).230D4 | 128,268 |
(C22×C4).231D4 = C42.74D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).231D4 | 128,269 |
(C22×C4).232D4 = C42.409D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).232D4 | 128,272 |
(C22×C4).233D4 = C42.410D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).233D4 | 128,274 |
(C22×C4).234D4 = C42.411D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).234D4 | 128,275 |
(C22×C4).235D4 = C42.412D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).235D4 | 128,276 |
(C22×C4).236D4 = C42.413D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).236D4 | 128,277 |
(C22×C4).237D4 = C42.414D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).237D4 | 128,278 |
(C22×C4).238D4 = C42.415D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).238D4 | 128,280 |
(C22×C4).239D4 = C42.416D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).239D4 | 128,281 |
(C22×C4).240D4 = C42.417D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).240D4 | 128,285 |
(C22×C4).241D4 = C42.418D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).241D4 | 128,286 |
(C22×C4).242D4 = C42.82D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).242D4 | 128,287 |
(C22×C4).243D4 = C42.83D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).243D4 | 128,288 |
(C22×C4).244D4 = C42.84D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).244D4 | 128,289 |
(C22×C4).245D4 = C42.85D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).245D4 | 128,290 |
(C22×C4).246D4 = C42.86D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).246D4 | 128,291 |
(C22×C4).247D4 = C42.87D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).247D4 | 128,292 |
(C22×C4).248D4 = C42.88D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).248D4 | 128,293 |
(C22×C4).249D4 = C8⋊1M4(2) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).249D4 | 128,301 |
(C22×C4).250D4 = C42.Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).250D4 | 128,304 |
(C22×C4).251D4 = C42.21Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).251D4 | 128,306 |
(C22×C4).252D4 = C2×C4.9C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).252D4 | 128,462 |
(C22×C4).253D4 = C2×C4.10C42 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).253D4 | 128,463 |
(C22×C4).254D4 = C24.63D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).254D4 | 128,465 |
(C22×C4).255D4 = C24.152D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).255D4 | 128,468 |
(C22×C4).256D4 = C24.7Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).256D4 | 128,470 |
(C22×C4).257D4 = C24.51(C2×C4) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).257D4 | 128,512 |
(C22×C4).258D4 = C24.165C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).258D4 | 128,514 |
(C22×C4).259D4 = C25.C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).259D4 | 128,515 |
(C22×C4).260D4 = C4.C22≀C2 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).260D4 | 128,516 |
(C22×C4).261D4 = (C23×C4).C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).261D4 | 128,517 |
(C22×C4).262D4 = C23.35D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).262D4 | 128,518 |
(C22×C4).263D4 = C24.155D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).263D4 | 128,519 |
(C22×C4).264D4 = C42.95D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).264D4 | 128,530 |
(C22×C4).265D4 = C24.167C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).265D4 | 128,531 |
(C22×C4).266D4 = C42.98D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).266D4 | 128,534 |
(C22×C4).267D4 = C42.99D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).267D4 | 128,535 |
(C22×C4).268D4 = C42.100D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).268D4 | 128,536 |
(C22×C4).269D4 = C42.101D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).269D4 | 128,537 |
(C22×C4).270D4 = C42.102D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).270D4 | 128,538 |
(C22×C4).271D4 = C24.67D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).271D4 | 128,541 |
(C22×C4).272D4 = C24.9Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).272D4 | 128,543 |
(C22×C4).273D4 = C24.53(C2×C4) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).273D4 | 128,550 |
(C22×C4).274D4 = C24.169C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).274D4 | 128,552 |
(C22×C4).275D4 = (C22×C4).275D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).275D4 | 128,553 |
(C22×C4).276D4 = (C22×C4).276D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).276D4 | 128,554 |
(C22×C4).277D4 = C23.36D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).277D4 | 128,555 |
(C22×C4).278D4 = C24.157D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).278D4 | 128,556 |
(C22×C4).279D4 = C42.24Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).279D4 | 128,568 |
(C22×C4).280D4 = C42.26Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).280D4 | 128,579 |
(C22×C4).281D4 = (C2×C8).195D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).281D4 | 128,583 |
(C22×C4).282D4 = C23.37D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).282D4 | 128,584 |
(C22×C4).283D4 = C24.159D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).283D4 | 128,585 |
(C22×C4).284D4 = C23⋊2M4(2) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).284D4 | 128,602 |
(C22×C4).285D4 = C24.72D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).285D4 | 128,603 |
(C22×C4).286D4 = C24.160D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).286D4 | 128,604 |
(C22×C4).287D4 = C24.73D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).287D4 | 128,605 |
(C22×C4).288D4 = C23.38D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).288D4 | 128,606 |
(C22×C4).289D4 = C24.74D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).289D4 | 128,607 |
(C22×C4).290D4 = C24.75D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).290D4 | 128,626 |
(C22×C4).291D4 = C24.76D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).291D4 | 128,627 |
(C22×C4).292D4 = C42⋊7D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).292D4 | 128,629 |
(C22×C4).293D4 = C24.174C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).293D4 | 128,631 |
(C22×C4).294D4 = M4(2)⋊20D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).294D4 | 128,632 |
(C22×C4).295D4 = M4(2).45D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).295D4 | 128,633 |
(C22×C4).296D4 = C42.110D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).296D4 | 128,691 |
(C22×C4).297D4 = C42.111D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).297D4 | 128,692 |
(C22×C4).298D4 = C42.112D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).298D4 | 128,693 |
(C22×C4).299D4 = C42⋊8D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).299D4 | 128,695 |
(C22×C4).300D4 = C24.175C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).300D4 | 128,696 |
(C22×C4).301D4 = M4(2)⋊13D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).301D4 | 128,712 |
(C22×C4).302D4 = M4(2)⋊7Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).302D4 | 128,718 |
(C22×C4).303D4 = C42.124D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).303D4 | 128,724 |
(C22×C4).304D4 = C42.125D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).304D4 | 128,725 |
(C22×C4).305D4 = C42⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).305D4 | 128,727 |
(C22×C4).306D4 = C24.176C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).306D4 | 128,728 |
(C22×C4).307D4 = (C2×C4)⋊2D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).307D4 | 128,743 |
(C22×C4).308D4 = (C2×C4)⋊3SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).308D4 | 128,745 |
(C22×C4).309D4 = (C2×C8)⋊20D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).309D4 | 128,746 |
(C22×C4).310D4 = (C2×C4)⋊2Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).310D4 | 128,748 |
(C22×C4).311D4 = (C2×D4)⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).311D4 | 128,755 |
(C22×C4).312D4 = (C2×Q8)⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).312D4 | 128,756 |
(C22×C4).313D4 = C4⋊C4⋊7D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).313D4 | 128,773 |
(C22×C4).314D4 = C4⋊C4.95D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).314D4 | 128,775 |
(C22×C4).315D4 = C4⋊C4⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).315D4 | 128,789 |
(C22×C4).316D4 = (C2×C8)⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).316D4 | 128,790 |
(C22×C4).317D4 = (C2×C4).24D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).317D4 | 128,803 |
(C22×C4).318D4 = (C2×C4).19Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).318D4 | 128,804 |
(C22×C4).319D4 = (C2×C8).1Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).319D4 | 128,815 |
(C22×C4).320D4 = C2.(C8⋊3Q8) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).320D4 | 128,816 |
(C22×C4).321D4 = (C2×C4).26D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).321D4 | 128,818 |
(C22×C4).322D4 = (C2×C4).21Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).322D4 | 128,819 |
(C22×C4).323D4 = C4.(C4⋊Q8) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).323D4 | 128,820 |
(C22×C4).324D4 = (C2×C4).27D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).324D4 | 128,825 |
(C22×C4).325D4 = (C2×C8).169D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).325D4 | 128,826 |
(C22×C4).326D4 = (C2×C8).60D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).326D4 | 128,827 |
(C22×C4).327D4 = (C2×C8).170D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).327D4 | 128,828 |
(C22×C4).328D4 = (C2×C4).28D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).328D4 | 128,831 |
(C22×C4).329D4 = (C2×C4).23Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).329D4 | 128,832 |
(C22×C4).330D4 = C23.39D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).330D4 | 128,871 |
(C22×C4).331D4 = C23.40D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).331D4 | 128,872 |
(C22×C4).332D4 = C23.41D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).332D4 | 128,873 |
(C22×C4).333D4 = C23.20SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).333D4 | 128,875 |
(C22×C4).334D4 = C2×D8⋊2C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).334D4 | 128,876 |
(C22×C4).335D4 = C23.13D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).335D4 | 128,877 |
(C22×C4).336D4 = C2×M5(2)⋊C2 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).336D4 | 128,878 |
(C22×C4).337D4 = C2×C8.17D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).337D4 | 128,879 |
(C22×C4).338D4 = C23.21SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).338D4 | 128,880 |
(C22×C4).339D4 = C2×C8.Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).339D4 | 128,886 |
(C22×C4).340D4 = M5(2)⋊3C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).340D4 | 128,887 |
(C22×C4).341D4 = M5(2)⋊1C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).341D4 | 128,891 |
(C22×C4).342D4 = M5(2).1C4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).342D4 | 128,893 |
(C22×C4).343D4 = D8⋊7D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).343D4 | 128,916 |
(C22×C4).344D4 = Q16⋊7D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).344D4 | 128,917 |
(C22×C4).345D4 = D8⋊8D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).345D4 | 128,918 |
(C22×C4).346D4 = D8.9D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).346D4 | 128,919 |
(C22×C4).347D4 = Q16.8D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).347D4 | 128,920 |
(C22×C4).348D4 = D8.10D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).348D4 | 128,921 |
(C22×C4).349D4 = C16⋊D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).349D4 | 128,950 |
(C22×C4).350D4 = C16.D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).350D4 | 128,951 |
(C22×C4).351D4 = C16⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).351D4 | 128,952 |
(C22×C4).352D4 = C22.D16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).352D4 | 128,964 |
(C22×C4).353D4 = C23.49D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).353D4 | 128,965 |
(C22×C4).354D4 = C23.19D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).354D4 | 128,966 |
(C22×C4).355D4 = C23.50D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).355D4 | 128,967 |
(C22×C4).356D4 = C23.51D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).356D4 | 128,968 |
(C22×C4).357D4 = C23.20D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).357D4 | 128,969 |
(C22×C4).358D4 = C23.191C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).358D4 | 128,1041 |
(C22×C4).359D4 = C23.192C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).359D4 | 128,1042 |
(C22×C4).360D4 = C24.542C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).360D4 | 128,1043 |
(C22×C4).361D4 = C24.545C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).361D4 | 128,1048 |
(C22×C4).362D4 = C23.199C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).362D4 | 128,1049 |
(C22×C4).363D4 = C2×C23⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).363D4 | 128,1117 |
(C22×C4).364D4 = C2×C23.78C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).364D4 | 128,1119 |
(C22×C4).365D4 = C2×C23.Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).365D4 | 128,1121 |
(C22×C4).366D4 = C2×C23.11D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).366D4 | 128,1122 |
(C22×C4).367D4 = C2×C23.81C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).367D4 | 128,1123 |
(C22×C4).368D4 = C2×C23.4Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).368D4 | 128,1125 |
(C22×C4).369D4 = C2×C23.83C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).369D4 | 128,1126 |
(C22×C4).370D4 = C23.295C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).370D4 | 128,1127 |
(C22×C4).371D4 = C24.243C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).371D4 | 128,1138 |
(C22×C4).372D4 = C23.309C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).372D4 | 128,1141 |
(C22×C4).373D4 = C23.313C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).373D4 | 128,1145 |
(C22×C4).374D4 = C23.315C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).374D4 | 128,1147 |
(C22×C4).375D4 = C24.252C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).375D4 | 128,1149 |
(C22×C4).376D4 = C24.264C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).376D4 | 128,1164 |
(C22×C4).377D4 = C23.334C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).377D4 | 128,1166 |
(C22×C4).378D4 = C23.335C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).378D4 | 128,1167 |
(C22×C4).379D4 = C24.565C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).379D4 | 128,1168 |
(C22×C4).380D4 = C23.382C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).380D4 | 128,1214 |
(C22×C4).381D4 = C24.576C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).381D4 | 128,1216 |
(C22×C4).382D4 = C23.385C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).382D4 | 128,1217 |
(C22×C4).383D4 = C24.299C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).383D4 | 128,1218 |
(C22×C4).384D4 = C24.300C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).384D4 | 128,1219 |
(C22×C4).385D4 = C23.398C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).385D4 | 128,1230 |
(C22×C4).386D4 = C24.308C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).386D4 | 128,1231 |
(C22×C4).387D4 = C23.400C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).387D4 | 128,1232 |
(C22×C4).388D4 = C23.401C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).388D4 | 128,1233 |
(C22×C4).389D4 = C23.402C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).389D4 | 128,1234 |
(C22×C4).390D4 = C24.579C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).390D4 | 128,1235 |
(C22×C4).391D4 = C23.404C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).391D4 | 128,1236 |
(C22×C4).392D4 = C23.461C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).392D4 | 128,1293 |
(C22×C4).393D4 = C24.583C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).393D4 | 128,1296 |
(C22×C4).394D4 = C23.479C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).394D4 | 128,1311 |
(C22×C4).395D4 = C23.483C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).395D4 | 128,1315 |
(C22×C4).396D4 = C23.491C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).396D4 | 128,1323 |
(C22×C4).397D4 = C23.514C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).397D4 | 128,1346 |
(C22×C4).398D4 = C24.361C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).398D4 | 128,1348 |
(C22×C4).399D4 = C42⋊28D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).399D4 | 128,1352 |
(C22×C4).400D4 = C42.186D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).400D4 | 128,1353 |
(C22×C4).401D4 = C24.589C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).401D4 | 128,1355 |
(C22×C4).402D4 = C23.524C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).402D4 | 128,1356 |
(C22×C4).403D4 = C23.525C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).403D4 | 128,1357 |
(C22×C4).404D4 = C24⋊5Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).404D4 | 128,1358 |
(C22×C4).405D4 = C23.527C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).405D4 | 128,1359 |
(C22×C4).406D4 = C24.374C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).406D4 | 128,1370 |
(C22×C4).407D4 = C24.592C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).407D4 | 128,1371 |
(C22×C4).408D4 = C23.559C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).408D4 | 128,1391 |
(C22×C4).409D4 = C24.378C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).409D4 | 128,1395 |
(C22×C4).410D4 = C23.714C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).410D4 | 128,1546 |
(C22×C4).411D4 = C23.716C24 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).411D4 | 128,1548 |
(C22×C4).412D4 = C24.462C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).412D4 | 128,1549 |
(C22×C4).413D4 = C24.73(C2×C4) | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).413D4 | 128,1611 |
(C22×C4).414D4 = C42.257C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).414D4 | 128,1637 |
(C22×C4).415D4 = C2×C22⋊D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).415D4 | 128,1728 |
(C22×C4).416D4 = C2×C22⋊SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).416D4 | 128,1729 |
(C22×C4).417D4 = C2×Q8⋊D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).417D4 | 128,1730 |
(C22×C4).418D4 = C2×C22⋊Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).418D4 | 128,1731 |
(C22×C4).419D4 = C24.177D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).419D4 | 128,1735 |
(C22×C4).420D4 = C24.178D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).420D4 | 128,1736 |
(C22×C4).421D4 = C42.443D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).421D4 | 128,1767 |
(C22×C4).422D4 = C42.444D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).422D4 | 128,1770 |
(C22×C4).423D4 = C42.445D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).423D4 | 128,1771 |
(C22×C4).424D4 = C42.446D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).424D4 | 128,1772 |
(C22×C4).425D4 = C2×C8⋊D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).425D4 | 128,1783 |
(C22×C4).426D4 = C2×C8⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).426D4 | 128,1784 |
(C22×C4).427D4 = C2×C8.D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).427D4 | 128,1785 |
(C22×C4).428D4 = C24.110D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).428D4 | 128,1786 |
(C22×C4).429D4 = M4(2)⋊14D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).429D4 | 128,1787 |
(C22×C4).430D4 = M4(2)⋊15D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).430D4 | 128,1788 |
(C22×C4).431D4 = C42.447D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).431D4 | 128,1808 |
(C22×C4).432D4 = C42.448D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).432D4 | 128,1811 |
(C22×C4).433D4 = C42.449D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).433D4 | 128,1812 |
(C22×C4).434D4 = C2×C22.D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).434D4 | 128,1817 |
(C22×C4).435D4 = C2×C23.47D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).435D4 | 128,1818 |
(C22×C4).436D4 = C2×C23.19D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).436D4 | 128,1819 |
(C22×C4).437D4 = C2×C23.20D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).437D4 | 128,1820 |
(C22×C4).438D4 = C2×C23.46D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).438D4 | 128,1821 |
(C22×C4).439D4 = C2×C23.48D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).439D4 | 128,1822 |
(C22×C4).440D4 = C24.115D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).440D4 | 128,1823 |
(C22×C4).441D4 = C24.183D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).441D4 | 128,1824 |
(C22×C4).442D4 = C24.116D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).442D4 | 128,1825 |
(C22×C4).443D4 = C24.117D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).443D4 | 128,1826 |
(C22×C4).444D4 = C24.118D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).444D4 | 128,1827 |
(C22×C4).445D4 = C42.450D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).445D4 | 128,1838 |
(C22×C4).446D4 = C42.451D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).446D4 | 128,1839 |
(C22×C4).447D4 = C42.227D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).447D4 | 128,1841 |
(C22×C4).448D4 = C42.228D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).448D4 | 128,1842 |
(C22×C4).449D4 = C42.229D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).449D4 | 128,1843 |
(C22×C4).450D4 = C42.230D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).450D4 | 128,1844 |
(C22×C4).451D4 = C42.231D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).451D4 | 128,1845 |
(C22×C4).452D4 = C42.232D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).452D4 | 128,1846 |
(C22×C4).453D4 = C42.233D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).453D4 | 128,1847 |
(C22×C4).454D4 = C42.234D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).454D4 | 128,1848 |
(C22×C4).455D4 = C42.235D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).455D4 | 128,1849 |
(C22×C4).456D4 = C2×C42.28C22 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).456D4 | 128,1864 |
(C22×C4).457D4 = C2×C42.29C22 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).457D4 | 128,1865 |
(C22×C4).458D4 = C2×C42.30C22 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).458D4 | 128,1866 |
(C22×C4).459D4 = C42.239D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).459D4 | 128,1867 |
(C22×C4).460D4 = C42.240D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).460D4 | 128,1870 |
(C22×C4).461D4 = C42.241D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).461D4 | 128,1871 |
(C22×C4).462D4 = C42.242D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).462D4 | 128,1872 |
(C22×C4).463D4 = C42.243D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).463D4 | 128,1873 |
(C22×C4).464D4 = C42.244D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).464D4 | 128,1874 |
(C22×C4).465D4 = C2×C8⋊3D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).465D4 | 128,1880 |
(C22×C4).466D4 = C2×C8.2D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).466D4 | 128,1881 |
(C22×C4).467D4 = C42.247D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).467D4 | 128,1882 |
(C22×C4).468D4 = M4(2)⋊7D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).468D4 | 128,1883 |
(C22×C4).469D4 = M4(2)⋊8D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).469D4 | 128,1884 |
(C22×C4).470D4 = M4(2)⋊9D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).470D4 | 128,1885 |
(C22×C4).471D4 = C2×C8⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).471D4 | 128,1893 |
(C22×C4).472D4 = C42.252D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).472D4 | 128,1894 |
(C22×C4).473D4 = M4(2)⋊5Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).473D4 | 128,1897 |
(C22×C4).474D4 = M4(2)⋊6Q8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).474D4 | 128,1898 |
(C22×C4).475D4 = C42.255D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).475D4 | 128,1903 |
(C22×C4).476D4 = C42.256D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).476D4 | 128,1904 |
(C22×C4).477D4 = C42.257D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).477D4 | 128,1912 |
(C22×C4).478D4 = C42.258D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).478D4 | 128,1913 |
(C22×C4).479D4 = C42.259D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).479D4 | 128,1914 |
(C22×C4).480D4 = C42.261D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).480D4 | 128,1916 |
(C22×C4).481D4 = C42.262D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).481D4 | 128,1917 |
(C22×C4).482D4 = C23⋊3D8 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).482D4 | 128,1918 |
(C22×C4).483D4 = C23⋊4SD16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).483D4 | 128,1919 |
(C22×C4).484D4 = C24.121D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).484D4 | 128,1920 |
(C22×C4).485D4 = C23⋊3Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).485D4 | 128,1921 |
(C22×C4).486D4 = C24.123D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).486D4 | 128,1922 |
(C22×C4).487D4 = C24.125D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).487D4 | 128,1924 |
(C22×C4).488D4 = C24.126D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).488D4 | 128,1925 |
(C22×C4).489D4 = C24.127D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).489D4 | 128,1926 |
(C22×C4).490D4 = C24.128D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).490D4 | 128,1927 |
(C22×C4).491D4 = C24.129D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).491D4 | 128,1928 |
(C22×C4).492D4 = C24.130D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).492D4 | 128,1929 |
(C22×C4).493D4 = C42.263D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).493D4 | 128,1937 |
(C22×C4).494D4 = C42.264D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).494D4 | 128,1938 |
(C22×C4).495D4 = C42.265D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).495D4 | 128,1939 |
(C22×C4).496D4 = C42.266D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).496D4 | 128,1940 |
(C22×C4).497D4 = C42.267D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).497D4 | 128,1941 |
(C22×C4).498D4 = C42.268D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).498D4 | 128,1942 |
(C22×C4).499D4 = C42.270D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).499D4 | 128,1944 |
(C22×C4).500D4 = C42.271D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).500D4 | 128,1945 |
(C22×C4).501D4 = C42.272D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).501D4 | 128,1946 |
(C22×C4).502D4 = C42.273D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).502D4 | 128,1947 |
(C22×C4).503D4 = C42.274D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).503D4 | 128,1948 |
(C22×C4).504D4 = C42.275D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).504D4 | 128,1949 |
(C22×C4).505D4 = C42.276D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).505D4 | 128,1950 |
(C22×C4).506D4 = C42.277D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).506D4 | 128,1951 |
(C22×C4).507D4 = C42.278D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).507D4 | 128,1958 |
(C22×C4).508D4 = C42.279D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).508D4 | 128,1959 |
(C22×C4).509D4 = C42.280D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).509D4 | 128,1960 |
(C22×C4).510D4 = C42.281D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).510D4 | 128,1961 |
(C22×C4).511D4 = C42.282D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).511D4 | 128,1962 |
(C22×C4).512D4 = C42.283D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).512D4 | 128,1963 |
(C22×C4).513D4 = C42.285D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).513D4 | 128,1965 |
(C22×C4).514D4 = C42.286D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).514D4 | 128,1966 |
(C22×C4).515D4 = C42.287D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).515D4 | 128,1967 |
(C22×C4).516D4 = C42.288D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).516D4 | 128,1968 |
(C22×C4).517D4 = C42.289D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).517D4 | 128,1969 |
(C22×C4).518D4 = C42.290D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).518D4 | 128,1970 |
(C22×C4).519D4 = C42.291D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).519D4 | 128,1971 |
(C22×C4).520D4 = C42.292D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).520D4 | 128,1972 |
(C22×C4).521D4 = C42.293D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).521D4 | 128,1977 |
(C22×C4).522D4 = C42.294D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).522D4 | 128,1978 |
(C22×C4).523D4 = C42.295D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).523D4 | 128,1979 |
(C22×C4).524D4 = C42.296D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).524D4 | 128,1980 |
(C22×C4).525D4 = C42.297D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).525D4 | 128,1981 |
(C22×C4).526D4 = C42.299D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).526D4 | 128,1983 |
(C22×C4).527D4 = C42.300D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).527D4 | 128,1984 |
(C22×C4).528D4 = C42.301D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).528D4 | 128,1985 |
(C22×C4).529D4 = C42.302D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).529D4 | 128,1986 |
(C22×C4).530D4 = C42.303D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).530D4 | 128,1987 |
(C22×C4).531D4 = C42.304D4 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).531D4 | 128,1988 |
(C22×C4).532D4 = C2×C16⋊C22 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).532D4 | 128,2144 |
(C22×C4).533D4 = C2×Q32⋊C2 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).533D4 | 128,2145 |
(C22×C4).534D4 = D16⋊C22 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | 4 | (C2^2xC4).534D4 | 128,2146 |
(C22×C4).535D4 = C2×C23.38C23 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).535D4 | 128,2179 |
(C22×C4).536D4 = C22×C8⋊C22 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).536D4 | 128,2310 |
(C22×C4).537D4 = C22×C8.C22 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).537D4 | 128,2311 |
(C22×C4).538D4 = C2×D8⋊C22 | φ: D4/C2 → C22 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).538D4 | 128,2312 |
(C22×C4).539D4 = C42.455D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).539D4 | 128,208 |
(C22×C4).540D4 = C42.305D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).540D4 | 128,226 |
(C22×C4).541D4 = C42.42Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).541D4 | 128,296 |
(C22×C4).542D4 = C42.43Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).542D4 | 128,300 |
(C22×C4).543D4 = C42.425D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).543D4 | 128,529 |
(C22×C4).544D4 = C24.133D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).544D4 | 128,539 |
(C22×C4).545D4 = C23.22D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).545D4 | 128,540 |
(C22×C4).546D4 = C24.19Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).546D4 | 128,542 |
(C22×C4).547D4 = C42.56Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).547D4 | 128,567 |
(C22×C4).548D4 = C42.60Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).548D4 | 128,578 |
(C22×C4).549D4 = C23.22M4(2) | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).549D4 | 128,601 |
(C22×C4).550D4 = C24.135D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).550D4 | 128,624 |
(C22×C4).551D4 = C23.23D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).551D4 | 128,625 |
(C22×C4).552D4 = (C2×C4)≀C2 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 16 | | (C2^2xC4).552D4 | 128,628 |
(C22×C4).553D4 = C2.(C8⋊8D4) | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).553D4 | 128,665 |
(C22×C4).554D4 = C2.(C8⋊7D4) | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).554D4 | 128,666 |
(C22×C4).555D4 = C8⋊7(C4⋊C4) | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).555D4 | 128,673 |
(C22×C4).556D4 = C8⋊5(C4⋊C4) | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).556D4 | 128,674 |
(C22×C4).557D4 = C42.433D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).557D4 | 128,690 |
(C22×C4).558D4 = (C2×C4)⋊9SD16 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).558D4 | 128,700 |
(C22×C4).559D4 = (C2×C4)⋊6Q16 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).559D4 | 128,701 |
(C22×C4).560D4 = (C2×C4)⋊6D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).560D4 | 128,702 |
(C22×C4).561D4 = C42.437D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).561D4 | 128,723 |
(C22×C4).562D4 = C2×C23.65C23 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).562D4 | 128,1023 |
(C22×C4).563D4 = C4×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).563D4 | 128,1671 |
(C22×C4).564D4 = C24.144D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).564D4 | 128,1782 |
(C22×C4).565D4 = C2×C42.78C22 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).565D4 | 128,1862 |
(C22×C4).566D4 = C2×C8.12D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).566D4 | 128,1878 |
(C22×C4).567D4 = C2×C8.5Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).567D4 | 128,1890 |
(C22×C4).568D4 = C42.308D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).568D4 | 128,1900 |
(C22×C4).569D4 = C8.7C42 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).569D4 | 128,112 |
(C22×C4).570D4 = C8.8C42 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).570D4 | 128,113 |
(C22×C4).571D4 = C8.9C42 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).571D4 | 128,114 |
(C22×C4).572D4 = C42.315D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).572D4 | 128,224 |
(C22×C4).573D4 = C42.316D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).573D4 | 128,225 |
(C22×C4).574D4 = C8⋊8M4(2) | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).574D4 | 128,298 |
(C22×C4).575D4 = C8⋊7M4(2) | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).575D4 | 128,299 |
(C22×C4).576D4 = C42.55Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).576D4 | 128,566 |
(C22×C4).577D4 = C42.58Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).577D4 | 128,576 |
(C22×C4).578D4 = C42.59Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).578D4 | 128,577 |
(C22×C4).579D4 = C42.431D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).579D4 | 128,688 |
(C22×C4).580D4 = C42.432D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).580D4 | 128,689 |
(C22×C4).581D4 = C42.436D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).581D4 | 128,722 |
(C22×C4).582D4 = C2×C2.D16 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).582D4 | 128,868 |
(C22×C4).583D4 = C2×C2.Q32 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).583D4 | 128,869 |
(C22×C4).584D4 = C23.24D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).584D4 | 128,870 |
(C22×C4).585D4 = C2×D8.C4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).585D4 | 128,874 |
(C22×C4).586D4 = C2×C16⋊3C4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).586D4 | 128,888 |
(C22×C4).587D4 = C2×C16⋊4C4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).587D4 | 128,889 |
(C22×C4).588D4 = C23.25D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).588D4 | 128,890 |
(C22×C4).589D4 = C2×C8.4Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).589D4 | 128,892 |
(C22×C4).590D4 = C16⋊7D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).590D4 | 128,947 |
(C22×C4).591D4 = C16.19D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).591D4 | 128,948 |
(C22×C4).592D4 = C16⋊8D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).592D4 | 128,949 |
(C22×C4).593D4 = C2×C42⋊8C4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).593D4 | 128,1013 |
(C22×C4).594D4 = C2×C42⋊9C4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).594D4 | 128,1016 |
(C22×C4).595D4 = C23.167C24 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).595D4 | 128,1017 |
(C22×C4).596D4 = C2×C23.67C23 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).596D4 | 128,1026 |
(C22×C4).597D4 = C23.179C24 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).597D4 | 128,1029 |
(C22×C4).598D4 = C42⋊46D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).598D4 | 128,1582 |
(C22×C4).599D4 = C42.440D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).599D4 | 128,1589 |
(C22×C4).600D4 = C22×D4⋊C4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).600D4 | 128,1622 |
(C22×C4).601D4 = C22×Q8⋊C4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).601D4 | 128,1623 |
(C22×C4).602D4 = C2×C4⋊M4(2) | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).602D4 | 128,1635 |
(C22×C4).603D4 = C22×C4.Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).603D4 | 128,1639 |
(C22×C4).604D4 = C22×C2.D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).604D4 | 128,1640 |
(C22×C4).605D4 = C2×C8⋊8D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).605D4 | 128,1779 |
(C22×C4).606D4 = C2×C8⋊7D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).606D4 | 128,1780 |
(C22×C4).607D4 = C2×C8.18D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).607D4 | 128,1781 |
(C22×C4).608D4 = C2×C4.4D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).608D4 | 128,1860 |
(C22×C4).609D4 = C2×C4.SD16 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).609D4 | 128,1861 |
(C22×C4).610D4 = C42.355D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).610D4 | 128,1863 |
(C22×C4).611D4 = C2×C8⋊5D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).611D4 | 128,1875 |
(C22×C4).612D4 = C2×C8⋊4D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).612D4 | 128,1876 |
(C22×C4).613D4 = C2×C4⋊Q16 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).613D4 | 128,1877 |
(C22×C4).614D4 = C42.360D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).614D4 | 128,1879 |
(C22×C4).615D4 = C2×C8⋊3Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).615D4 | 128,1889 |
(C22×C4).616D4 = C2×C8⋊2Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).616D4 | 128,1891 |
(C22×C4).617D4 = C42.364D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).617D4 | 128,1892 |
(C22×C4).618D4 = C42.365D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).618D4 | 128,1899 |
(C22×C4).619D4 = C42.366D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).619D4 | 128,1901 |
(C22×C4).620D4 = C42.367D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).620D4 | 128,1902 |
(C22×C4).621D4 = C22×D16 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).621D4 | 128,2140 |
(C22×C4).622D4 = C22×SD32 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).622D4 | 128,2141 |
(C22×C4).623D4 = C22×Q32 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).623D4 | 128,2142 |
(C22×C4).624D4 = C2×C4○D16 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).624D4 | 128,2143 |
(C22×C4).625D4 = C22×C4.4D4 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).625D4 | 128,2168 |
(C22×C4).626D4 = C22×C4⋊Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).626D4 | 128,2173 |
(C22×C4).627D4 = C23×D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).627D4 | 128,2306 |
(C22×C4).628D4 = C23×SD16 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).628D4 | 128,2307 |
(C22×C4).629D4 = C23×Q16 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).629D4 | 128,2308 |
(C22×C4).630D4 = C22×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).630D4 | 128,2309 |
(C22×C4).631D4 = (C2×C4).98D8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).631D4 | 128,2 |
(C22×C4).632D4 = C4⋊C4⋊C8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).632D4 | 128,3 |
(C22×C4).633D4 = (C2×Q8)⋊C8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).633D4 | 128,4 |
(C22×C4).634D4 = C42⋊6C8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).634D4 | 128,8 |
(C22×C4).635D4 = M4(2)⋊C8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).635D4 | 128,10 |
(C22×C4).636D4 = C23.19C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).636D4 | 128,12 |
(C22×C4).637D4 = C23.21C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).637D4 | 128,14 |
(C22×C4).638D4 = C23.30D8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).638D4 | 128,26 |
(C22×C4).639D4 = C42.7Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).639D4 | 128,27 |
(C22×C4).640D4 = C24.48D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).640D4 | 128,29 |
(C22×C4).641D4 = C24.3Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).641D4 | 128,30 |
(C22×C4).642D4 = C42.9Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).642D4 | 128,32 |
(C22×C4).643D4 = C42.370D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).643D4 | 128,34 |
(C22×C4).644D4 = C24.17Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).644D4 | 128,165 |
(C22×C4).645D4 = C24.624C23 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).645D4 | 128,166 |
(C22×C4).646D4 = C24.626C23 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).646D4 | 128,168 |
(C22×C4).647D4 = C23⋊2C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).647D4 | 128,169 |
(C22×C4).648D4 = C2×C23⋊C8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).648D4 | 128,188 |
(C22×C4).649D4 = C2×C22.M4(2) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).649D4 | 128,189 |
(C22×C4).650D4 = C23.8M4(2) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).650D4 | 128,191 |
(C22×C4).651D4 = C23⋊C8⋊C2 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).651D4 | 128,200 |
(C22×C4).652D4 = C2×D4⋊C8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).652D4 | 128,206 |
(C22×C4).653D4 = C2×Q8⋊C8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).653D4 | 128,207 |
(C22×C4).654D4 = C42.397D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).654D4 | 128,209 |
(C22×C4).655D4 = C42.398D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).655D4 | 128,210 |
(C22×C4).656D4 = C42.399D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).656D4 | 128,211 |
(C22×C4).657D4 = C42.47D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).657D4 | 128,215 |
(C22×C4).658D4 = D4⋊5M4(2) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).658D4 | 128,222 |
(C22×C4).659D4 = Q8⋊5M4(2) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).659D4 | 128,223 |
(C22×C4).660D4 = C42.375D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).660D4 | 128,232 |
(C22×C4).661D4 = C24.53D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).661D4 | 128,233 |
(C22×C4).662D4 = C42.57D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).662D4 | 128,241 |
(C22×C4).663D4 = C2×C42.C22 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).663D4 | 128,254 |
(C22×C4).664D4 = C2×C42.2C22 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).664D4 | 128,255 |
(C22×C4).665D4 = C42.66D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).665D4 | 128,256 |
(C22×C4).666D4 = C42.69D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).666D4 | 128,264 |
(C22×C4).667D4 = M4(2)⋊1C8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).667D4 | 128,297 |
(C22×C4).668D4 = C42.92D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).668D4 | 128,305 |
(C22×C4).669D4 = C4×C23⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).669D4 | 128,486 |
(C22×C4).670D4 = C4×C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).670D4 | 128,490 |
(C22×C4).671D4 = D4⋊C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).671D4 | 128,494 |
(C22×C4).672D4 = Q8⋊C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).672D4 | 128,495 |
(C22×C4).673D4 = C8⋊C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).673D4 | 128,508 |
(C22×C4).674D4 = C24⋊3C8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).674D4 | 128,511 |
(C22×C4).675D4 = C24.65D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).675D4 | 128,520 |
(C22×C4).676D4 = C24.66D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).676D4 | 128,521 |
(C22×C4).677D4 = C23.32M4(2) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).677D4 | 128,549 |
(C22×C4).678D4 = C24.69D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).678D4 | 128,557 |
(C22×C4).679D4 = C24.70D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).679D4 | 128,558 |
(C22×C4).680D4 = C23.21M4(2) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).680D4 | 128,582 |
(C22×C4).681D4 = C24.71D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).681D4 | 128,586 |
(C22×C4).682D4 = C24.10Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).682D4 | 128,587 |
(C22×C4).683D4 = C2.(C4×D8) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).683D4 | 128,594 |
(C22×C4).684D4 = Q8⋊(C4⋊C4) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).684D4 | 128,595 |
(C22×C4).685D4 = D4⋊(C4⋊C4) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).685D4 | 128,596 |
(C22×C4).686D4 = Q8⋊C4⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).686D4 | 128,597 |
(C22×C4).687D4 = (C2×SD16)⋊14C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).687D4 | 128,609 |
(C22×C4).688D4 = (C2×C4)⋊9Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).688D4 | 128,610 |
(C22×C4).689D4 = (C2×C4)⋊9D8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).689D4 | 128,611 |
(C22×C4).690D4 = (C2×SD16)⋊15C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).690D4 | 128,612 |
(C22×C4).691D4 = C2.D8⋊4C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).691D4 | 128,650 |
(C22×C4).692D4 = C4.Q8⋊9C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).692D4 | 128,651 |
(C22×C4).693D4 = C4.Q8⋊10C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).693D4 | 128,652 |
(C22×C4).694D4 = C2.D8⋊5C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).694D4 | 128,653 |
(C22×C4).695D4 = D4⋊C4⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).695D4 | 128,657 |
(C22×C4).696D4 = C4.67(C4×D4) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).696D4 | 128,658 |
(C22×C4).697D4 = C4.68(C4×D4) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).697D4 | 128,659 |
(C22×C4).698D4 = C2.(C4×Q16) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).698D4 | 128,660 |
(C22×C4).699D4 = C42.31Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).699D4 | 128,681 |
(C22×C4).700D4 = C42.119D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).700D4 | 128,715 |
(C22×C4).701D4 = C42.123D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).701D4 | 128,721 |
(C22×C4).702D4 = C2×C23.8Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).702D4 | 128,1018 |
(C22×C4).703D4 = C2×C23.63C23 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).703D4 | 128,1020 |
(C22×C4).704D4 = C2×C24.C22 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).704D4 | 128,1021 |
(C22×C4).705D4 = C4×C22.D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).705D4 | 128,1033 |
(C22×C4).706D4 = C23.753C24 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).706D4 | 128,1585 |
(C22×C4).707D4 = C2×SD16⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).707D4 | 128,1672 |
(C22×C4).708D4 = C2×Q16⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).708D4 | 128,1673 |
(C22×C4).709D4 = C2×D8⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).709D4 | 128,1674 |
(C22×C4).710D4 = C4×C8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).710D4 | 128,1676 |
(C22×C4).711D4 = C4×C8.C22 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).711D4 | 128,1677 |
(C22×C4).712D4 = C2×D4⋊D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).712D4 | 128,1732 |
(C22×C4).713D4 = C2×D4.7D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).713D4 | 128,1733 |
(C22×C4).714D4 = C24.103D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).714D4 | 128,1734 |
(C22×C4).715D4 = C24.104D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).715D4 | 128,1737 |
(C22×C4).716D4 = C2×D4.2D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).716D4 | 128,1763 |
(C22×C4).717D4 = C2×Q8.D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).717D4 | 128,1766 |
(C22×C4).718D4 = C2×D4.Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).718D4 | 128,1804 |
(C22×C4).719D4 = C2×Q8.Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).719D4 | 128,1807 |
(C22×C4).720D4 = C42.225D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).720D4 | 128,1837 |
(C22×C4).721D4 = C42.226D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).721D4 | 128,1840 |
(C22×C4).722D4 = C42.8Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).722D4 | 128,28 |
(C22×C4).723D4 = C42.389D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).723D4 | 128,33 |
(C22×C4).724D4 = C42.10Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).724D4 | 128,35 |
(C22×C4).725D4 = C24.625C23 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).725D4 | 128,167 |
(C22×C4).726D4 = C24.(C2×C4) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).726D4 | 128,203 |
(C22×C4).727D4 = C24.45(C2×C4) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).727D4 | 128,204 |
(C22×C4).728D4 = C42.45D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).728D4 | 128,212 |
(C22×C4).729D4 = C42.46D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).729D4 | 128,213 |
(C22×C4).730D4 = D4⋊M4(2) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).730D4 | 128,218 |
(C22×C4).731D4 = Q8⋊M4(2) | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).731D4 | 128,219 |
(C22×C4).732D4 = C42.403D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).732D4 | 128,234 |
(C22×C4).733D4 = C42.404D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).733D4 | 128,235 |
(C22×C4).734D4 = C42.55D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).734D4 | 128,237 |
(C22×C4).735D4 = C42.56D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).735D4 | 128,238 |
(C22×C4).736D4 = C24.54D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).736D4 | 128,239 |
(C22×C4).737D4 = C24.55D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).737D4 | 128,240 |
(C22×C4).738D4 = C42.67D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).738D4 | 128,262 |
(C22×C4).739D4 = C42.68D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).739D4 | 128,263 |
(C22×C4).740D4 = C2×C4.D8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).740D4 | 128,270 |
(C22×C4).741D4 = C2×C4.10D8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).741D4 | 128,271 |
(C22×C4).742D4 = C2×C4.6Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).742D4 | 128,273 |
(C22×C4).743D4 = C42.78D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).743D4 | 128,279 |
(C22×C4).744D4 = C42.79D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).744D4 | 128,282 |
(C22×C4).745D4 = C42.80D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).745D4 | 128,283 |
(C22×C4).746D4 = C42.81D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).746D4 | 128,284 |
(C22×C4).747D4 = C42.90D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).747D4 | 128,302 |
(C22×C4).748D4 = C42.91D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).748D4 | 128,303 |
(C22×C4).749D4 = C23.28C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).749D4 | 128,460 |
(C22×C4).750D4 = C23.29C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).750D4 | 128,461 |
(C22×C4).751D4 = C2×C42⋊6C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).751D4 | 128,464 |
(C22×C4).752D4 = C2×C22.4Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).752D4 | 128,466 |
(C22×C4).753D4 = C24.132D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).753D4 | 128,467 |
(C22×C4).754D4 = C2×C4.C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).754D4 | 128,469 |
(C22×C4).755D4 = C24.162C23 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).755D4 | 128,472 |
(C22×C4).756D4 = C2×C22.C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).756D4 | 128,473 |
(C22×C4).757D4 = C23.15C42 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).757D4 | 128,474 |
(C22×C4).758D4 = C2×M4(2)⋊4C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).758D4 | 128,475 |
(C22×C4).759D4 = C42.29Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).759D4 | 128,679 |
(C22×C4).760D4 = C42.30Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).760D4 | 128,680 |
(C22×C4).761D4 = C43⋊C2 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).761D4 | 128,694 |
(C22×C4).762D4 = C42.117D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).762D4 | 128,713 |
(C22×C4).763D4 = C42.118D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).763D4 | 128,714 |
(C22×C4).764D4 = C42.121D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).764D4 | 128,719 |
(C22×C4).765D4 = C42.122D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).765D4 | 128,720 |
(C22×C4).766D4 = C42⋊16Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).766D4 | 128,726 |
(C22×C4).767D4 = C2×C23.7Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).767D4 | 128,1010 |
(C22×C4).768D4 = C25.85C22 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).768D4 | 128,1012 |
(C22×C4).769D4 = C23.178C24 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).769D4 | 128,1028 |
(C22×C4).770D4 = C24⋊8Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).770D4 | 128,1580 |
(C22×C4).771D4 = C24.599C23 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).771D4 | 128,1587 |
(C22×C4).772D4 = C2×C24.4C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).772D4 | 128,1609 |
(C22×C4).773D4 = C2×(C22×C8)⋊C2 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).773D4 | 128,1610 |
(C22×C4).774D4 = C2×C23.C23 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).774D4 | 128,1614 |
(C22×C4).775D4 = C22×C4.D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).775D4 | 128,1617 |
(C22×C4).776D4 = C22×C4.10D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).776D4 | 128,1618 |
(C22×C4).777D4 = C2×M4(2).8C22 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).777D4 | 128,1619 |
(C22×C4).778D4 = C2×C23.37D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).778D4 | 128,1625 |
(C22×C4).779D4 = C2×C23.38D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).779D4 | 128,1626 |
(C22×C4).780D4 = C2×C23.36D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).780D4 | 128,1627 |
(C22×C4).781D4 = C24.98D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).781D4 | 128,1628 |
(C22×C4).782D4 = C2×C42⋊C22 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).782D4 | 128,1632 |
(C22×C4).783D4 = C2×C42.6C22 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).783D4 | 128,1636 |
(C22×C4).784D4 = C2×M4(2)⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).784D4 | 128,1642 |
(C22×C4).785D4 = C24.100D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).785D4 | 128,1643 |
(C22×C4).786D4 = C2×M4(2).C4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).786D4 | 128,1647 |
(C22×C4).787D4 = C24.105D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).787D4 | 128,1738 |
(C22×C4).788D4 = C24.106D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).788D4 | 128,1739 |
(C22×C4).789D4 = C2×C4⋊D8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).789D4 | 128,1761 |
(C22×C4).790D4 = C2×D4.D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).790D4 | 128,1762 |
(C22×C4).791D4 = C2×C4⋊SD16 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).791D4 | 128,1764 |
(C22×C4).792D4 = C2×C4⋊2Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).792D4 | 128,1765 |
(C22×C4).793D4 = C42.211D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).793D4 | 128,1768 |
(C22×C4).794D4 = C42.212D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).794D4 | 128,1769 |
(C22×C4).795D4 = C2×D4⋊Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).795D4 | 128,1802 |
(C22×C4).796D4 = C2×D4⋊2Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).796D4 | 128,1803 |
(C22×C4).797D4 = C2×Q8⋊Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).797D4 | 128,1805 |
(C22×C4).798D4 = C2×C4.Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 128 | | (C2^2xC4).798D4 | 128,1806 |
(C22×C4).799D4 = C42.219D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).799D4 | 128,1809 |
(C22×C4).800D4 = C42.220D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).800D4 | 128,1810 |
(C22×C4).801D4 = C42.221D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).801D4 | 128,1832 |
(C22×C4).802D4 = C42.222D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 32 | | (C2^2xC4).802D4 | 128,1833 |
(C22×C4).803D4 = C42.223D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).803D4 | 128,1835 |
(C22×C4).804D4 = C42.224D4 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).804D4 | 128,1836 |
(C22×C4).805D4 = C22×C22⋊Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C4 | 64 | | (C2^2xC4).805D4 | 128,2165 |
(C22×C4).806D4 = C42.385D4 | central extension (φ=1) | 128 | | (C2^2xC4).806D4 | 128,9 |
(C22×C4).807D4 = C42.46Q8 | central extension (φ=1) | 128 | | (C2^2xC4).807D4 | 128,11 |
(C22×C4).808D4 = C4×C2.C42 | central extension (φ=1) | 128 | | (C2^2xC4).808D4 | 128,164 |
(C22×C4).809D4 = C2×C8⋊2C8 | central extension (φ=1) | 128 | | (C2^2xC4).809D4 | 128,294 |
(C22×C4).810D4 = C2×C8⋊1C8 | central extension (φ=1) | 128 | | (C2^2xC4).810D4 | 128,295 |
(C22×C4).811D4 = C2×C22.7C42 | central extension (φ=1) | 128 | | (C2^2xC4).811D4 | 128,459 |
(C22×C4).812D4 = C4×D4⋊C4 | central extension (φ=1) | 64 | | (C2^2xC4).812D4 | 128,492 |
(C22×C4).813D4 = C4×Q8⋊C4 | central extension (φ=1) | 128 | | (C2^2xC4).813D4 | 128,493 |
(C22×C4).814D4 = C4×C4.Q8 | central extension (φ=1) | 128 | | (C2^2xC4).814D4 | 128,506 |
(C22×C4).815D4 = C4×C2.D8 | central extension (φ=1) | 128 | | (C2^2xC4).815D4 | 128,507 |
(C22×C4).816D4 = C2×C4×C22⋊C4 | central extension (φ=1) | 64 | | (C2^2xC4).816D4 | 128,1000 |
(C22×C4).817D4 = C2×C4×C4⋊C4 | central extension (φ=1) | 128 | | (C2^2xC4).817D4 | 128,1001 |
(C22×C4).818D4 = C22×C22⋊C8 | central extension (φ=1) | 64 | | (C2^2xC4).818D4 | 128,1608 |
(C22×C4).819D4 = C2×C23.24D4 | central extension (φ=1) | 64 | | (C2^2xC4).819D4 | 128,1624 |
(C22×C4).820D4 = C22×C4≀C2 | central extension (φ=1) | 32 | | (C2^2xC4).820D4 | 128,1631 |
(C22×C4).821D4 = C22×C4⋊C8 | central extension (φ=1) | 128 | | (C2^2xC4).821D4 | 128,1634 |
(C22×C4).822D4 = C2×C23.25D4 | central extension (φ=1) | 64 | | (C2^2xC4).822D4 | 128,1641 |
(C22×C4).823D4 = C22×C8.C4 | central extension (φ=1) | 64 | | (C2^2xC4).823D4 | 128,1646 |
(C22×C4).824D4 = C2×C4×D8 | central extension (φ=1) | 64 | | (C2^2xC4).824D4 | 128,1668 |
(C22×C4).825D4 = C2×C4×SD16 | central extension (φ=1) | 64 | | (C2^2xC4).825D4 | 128,1669 |
(C22×C4).826D4 = C2×C4×Q16 | central extension (φ=1) | 128 | | (C2^2xC4).826D4 | 128,1670 |